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Propagation of Intense Short Laser Pulses 
in the Atmosphere 

.* 
P. Sprangle, J. R. Penano and B. Hafizi 

Plasma Physics Division 

Naval Research Laboratory 

Washington D.C. 20375 

'Present address: Icarus Research, Inc., P.O. Box 30780, Bethesda, MD 20824-0780. 

Abstract 

The propagation of short, intense laser pulses in the atmosphere may have a number of 

important applications in the areas of active and passive remote sensing, electronic countermeasures 

and induced electric discharges (artificial lightning). For example, localized ultraviolet radiation 

generated at a remote distance by laser ionization can provide a source for active fluorescence 

spectroscopy of biological and chemical agents in the atmosphere. Pulses of intense, directed white 

light may also find applications in the areas of hyperspectral imaging and differential absorption 

spectroscopy. In this paper the propagation of short, intense laser pulses in the atmosphere is 

investigated theoretically and numerically. A set of 3D, nonlinear propagation equations is derived, 

analyzed, and solved numerically. The propagation equations include the effects of dispersion, 

nonlinear self-focusing, stimulated molecular Raman scattering, multi-photon and tunneling 

ionization, energy depletion due to ionization, relativistic focusing, and ponderomotively excited 

plasma wakefields. The instantaneous frequency spread along a laser pulse in air, which develops 

due to various nonlinear effects, is analyzed and discussed. Coupled equations for the power, spot 
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size and electron density are derived for an intense ionizing laser pulse. An approximate 

equilibrium of a single optical filament, which involves a balancing between diffraction, nonlinear 

self-focusing, and plasma defocusing, is obtained and shown to require a specific distribution of 

power along the filament. These equations indicate that in the presence of ionization a self-guided 

optical filament is not realizable. A method for generating a remote spark in the atmosphere is 

proposed. This method utilizes the dispersive and nonlinear properties of air to cause a low 

intensity chirped laser pulse to compress both longitudinally and transversely. For optimally chosen 

parameters, the transverse and longitudinal focal lengths can be made to spatially coincide, resulting 

in rapid intensity increase, ionization, and white light generation in a localized region far from the 

source. Coupled equations for the laser spot size and pulse duration are derived that can describe 

the focusing and compression process in the low intensity regime. More general examples 

involving beam focusing, compression, ionization, and white light generation near the focal region 

are studied by numerically solving the full set of 3D, nonlinear propagation equations. 

VI 



I. INTRODUCTION 

Experiments using ultra short (-100 fsec), high intensity (> 1013 W/cm2) laser pulses 

appear to have demonstrated long-distance atmospheric propagation, air breakdown, 

filamentation, and white light generation [1-14]. Intense, directed white light pulses have been 

generated and backscattered from atmospheric aerosols up to altitudes of-15 km [4]. The 

generation of pulsed THz radiation in plasma channels formed by femtosecond pulses has also 

been observed and analyzed [15,16]. Although many of the observations can not be completely 

explained, the experimental, theoretical, and numerical results obtained to date indicate potential 

applications for both passive and active remote sensing [4, 17, 18], and induced electric 

discharges [10-14], among others. To achieve these potential applications it is necessary to have 

a comprehensive and quantitative understanding of the physical mechanisms that govern the 

propagation of intense, short laser pulses in air. 

The propagation of intense, short laser pulses in the atmosphere involves a variety of 

diverse linear and nonlinear optical processes. The combined effects of diffraction, nonlinear 

self focusing, ionization, and plasma defocusing play an important role in the propagation of 

laser and plasma filaments [1, 5, 6, 19-26]. In addition, nonlinear bound electron effects, 

stimulated Raman scattering, and plasma formation contribute to considerable spectral 

broadening and white light generation by the laser pulse [8, 9, 23, 27-32]. 

The physics governing the atmospheric propagation of short intense laser pulses can be 

very different from that of long laser pulses. For example, the Raman instability associated with 

the excitation of molecular rotational modes, which can disrupt the long distance propagation of 

long (> nsec) pulses [28], may not be as disruptive for laser pulses that are shorter than the 



characteristic period of the rotational mode (~ psec). In addition, experiments and theory 

indicate that the nonlinear refractive index of air is a function of the laser pulse length; e.g., for a 

-100 fsec pulse, it is observed that the effective nonlinear refractive index can be several times 

smaller than for a longer (> psec) pulse [1]. Also, because of their large spectral content, short 

laser pulses are more affected by dispersion. Finally, the atmospheric propagation of intense, 

short laser pulse trains generated by, for example, an RF linac driven free electron laser [33], 

may result in sufficient spectral broadening to affect the laser absorption rate. That is, the 

broadened laser pulse spectrum, rather than lying between individual absorption lines, may 

overlap some of the lines. This could affect the thermal blooming process which is a sensitive 

function of the absorption rate. 

In this paper we derive, analyze and numerically solve a system of 3D, nonlinear 

equations for atmospheric laser pulse propagation. The model includes diffraction, group 

velocity and higher order dispersion, stimulated molecular Raman scattering, photoionization, 

nonlinear bound electron effects, ionization energy depletion, and propagation in a spatially 

varying atmosphere. The propagation equations are used to analyze a number of physical 

processes, such as optical/plasma filamentation, pulse compression, nonlinear focusing and white 

light generation, see Fig. 1. A coupled set of equations for the laser power, spot size, and electron 

density is derived. At sufficiently low intensities, where ionizaton is neglegible, a neccessary condition 

for equilibrium of a laser filament is derived. It is shown that at high intensities laser power depletion due 

to ionization implies the absence of a matched beam solution, although extended propagation is possible 

provided the ionization rate is sufficiently small. For laser intensities sufficiently low that ionization 

effects and stimulated Raman scattering can be neglected, a set of coupled equations for the laser 

spot size and pulse duration are also derived. The coupled equations describe nonlinear self- 

focusing, compression and spreading of chirped pulses in a spatially varying atmosphere. 



Simulations based on the 3D numerical solution of the general propagation equations are used to 

study highly nonlinear propagation in the presence of plasma generation and Raman scattering. 

A process by which a laser pulse can remotely ionize a localized region of the 

atmosphere is studied for possible remote sensing applications. By introducing a negative 

frequency chirp on a relatively long laser pulse (> psec) the pulse can undergo longitudinal 

compression, due to linear group velocity dispersion. In addition, transverse self-focusing of the 

pulse takes place due to atmospheric nonlinearities. For a properly chosen set of parameters, the 

focal distances for longitudinal compression and transverse focusing can be made to coincide, 

resulting in a significant intensity increase over a relatively localized region. The compressed 

and focused laser pulse can ionize a local region (~ lm in extent) of the atmosphere kilometers 

away from the source. The localized spark can generate ultra-violet radiation through 

recombination. Since many biological and chemical agents will fluoresce in the optical regime 

when illuminated with ultra violet radiation, the recombination radiation can be used as a source 

for atmospheric fluorescence spectroscopy. For this application, the ultra-violet radiation must 

be generated locally since it is highly absorbed in the atmosphere. 

This paper is organized as follows. In Sec. II the general nonlinear 3D propagation 

equations are derived. In Sec. Ill photoionization processes, filamentation in neutral air and 

white light generation (including the effects of photoionization and Raman scattering) are 

discussed. Using the source-dependent expansion method, coupled equations for the laser 

power, spot size and electron density are derived, and an approximate equilibrium obtained in 

Sec. IV. Section V presents a discussion of compression and focusing of a laser pulse in the 

atmosphere, leading to the generation of a spark at a remote location. A set of coupled equations 

for the laser spot size and pulse duration are derived from the propagation equations in the low 



intensity regime. Using the simplified coupled equations, conditions are derived for optimal 

compression and focusing in the low intensity limit. Simulations based on numerical solution of 

the general propagation equations on a 3D Cartesian grid are used to model high intensity 

atmospheric propagation. Laser pulse propagation in a spatially varying atmosphere is also 

considered. Finally a summary is presented in Sec. VI. Appendix A contains the derivation of 

the linear source terms of the propagation equation while appendix B contains the derivation of 

the nonlinear source terms. 

II. GENERAL NONLINEAR PROPAGATION EQUATION 

In this section we derive a general nonlinear 3D equation describing the propagation of 

an intense laser pulse in air. The equation incorporates the effects of diffraction, dispersion, 

ionization, pulse energy depletion due to ionization, stimulated molecular Raman scattering, 

nonlinearities associated with bound electrons, spatial inhomogeneity in air density, plasma 

wakefields and relativistic electron motion. 

i) Wave Equation 

The starting point is the wave equation for the laser electric field E(r, t\ given by 

f 32 1      ^2   \ 
E = SL  + SNL, (1) 

v 

2     jr \__v_ 
1 + dz2      c2 dr 

where Vj  is the transverse Laplacian operator and z is the coordinate in the direction of 

propagation. The quantities SL and SNL denote source terms which are respectively linear and 

nonlinear in the laser electric field. 



The laser electric field, E(x, y, z, t), linear source term, S^ (x, y, z, t), and nonlinear 

source term, Syy£ (x, y, z, t), are written in terms of complex amplitudes, A(x,y,z, t), 

SL (x, y, z, t) and SN£ (x, y, z, t) and a rapidly varying phase, y/ (z, t), that is 

E(x,y,z,t)=A(x,y,z,t)exp(iy/(zJ))ex/2 + c.c, (2a) 

SL(x,y,z,t)=SL(x,y,z,t)exp(iy/(z,t))ex/2 + c.c, (2b) 

SJVL (x, y, z, t) = SNL (x, y, z, t) exp(z y/(z, t))ex/2 + c.c., (2c) 

where y/(z, t) = k0z - co0t is the phase, k0 is the carrier wavenumber, co0 is the carrier 

frequency, ex is a transverse unit vector in the direction of polarization, and c.c. denotes the 

complex conjugate. Substituting the field and source representations given by Eqs. (2) into Eq. 

(1) yields, 

y2
1-k2+-f + 2ik0-- + 2J-^— + TY- — -— 

v c2 dz c  dt     dz2     c2 dt2 j 
A(r,t) = SL(r,t) + SNL(r,t), 

(3) 

where the rapidly varying phase factor has been cancelled from both sides of the equation. 

Although the atmospheric density is spatially varying, the wavenumber is taken to be constant 

since the maximum change in the linear refractive index, i.e., fractional change in wavenumber, 

from sea level to vacuum is < 10" . The expressions for the linear and nonlinear source 

amplitudes are derived in appendices A and B, respectively. 

ii) Linear Source Terms 

The linear source amplitude can be expressed as 

SL(r,t)=   -*-    ^ie ae(r) (DJ       V     , (4) 
V c J (=0 dt 



where I = 0,1, 2, ■ ■ ■. The unitless dispersion coefficients a£ (r) in Eq. (4) are given by 

(5) at = 
OQ      d 

/!    do,' 
c2ß2(cü0)-(ol 

where ß(co) = (OD/C)[ 1 + An Xii®) V2 = (colc)n0{co), xL(co) is the linear susceptibility of 

bound electrons and n0 (a>) is the refractive index. 

iii) Nonlinear Source Terms 

The nonlinear source amplitude is due to a number of effects and can be written as 

$NL(r>0   ~   $ bound   + $ Raman   + $ plasma   + ^wake + ^rel   + ^iom W 

where the individual contributions are described as follows. The nonlinear contribution from 

bound electrons, Kerr effect, is given by 

where n2 is the electronic, contribution to the nonlinear refractive index. The nonlinear index 

defines a nonlinear self-focusing power [34-36], PNL   = A0 /(2OT20«2 ) • 

The source term due to stimulated molecular Raman scattering is given by 

SRanum(X,t)=   -4*^XLQ(t)A(r,t), (8) 
c 

where %L 1S tne linear susceptibility and the unitless Raman oscillator function Q(t) is 

determined by solving Eqs. (B9, BIO). The Raman source term can also contribute to the third 

order polarization field. 

The plasma source term is given by 



^ plasma \r ^ ) 

2'v)f     - ^ 
c1 

a>p{r,t) 
A(r,t), (9) 

2 V2 

where cop(r,t) = \4xq ne{r,t)lmj     is the plasma frequency, ne is the plasma density 

generated by ionization, and ve is the electron-neutral collision frequency. Ionization results in 

a plasma column which is localized to the laser axis. The plasma column causes a local decrease 

in the refractive index which can defocus the laser pulse. The term proportional to the electron 

collision frequency is responsible for the collisional absorption of laser energy, i.e., inverse 

bremsstrahlung. 

The source term Swaj(e is due to the possible generation of plasma waves and is given by 

SWake(r,t)=   -2- -A{r,t), (10) 
c2      ne 

where Sne represents a plasma density perturbation driven by the ponderomotive force of the 

laser pulse, i.e., a plasma wakefield [37]. The density perturbation, determined by Eq. (B19) 

together with Gauss's equation, results in a modulation of the plasma density at the plasma 

frequency. 

The term Srei is due to relativistic effects arising from quiver motion of plasma electrons 

in the field of the laser and is given by 

Srel(r>t) = 
a2

p(rJ)(q\A(r,t)\ 

Ac2 

^2 

A{r,t). (11) 
V mC(D0   j 

This relativistic source term defines a critical self-focusing power due to plasma [36], 

Pplasma  = 2c(g/re)  n0\p)0 Icop)   where re = q  Imc   is the classical electron radius. The 

total nonlinear self focusing power consists of contributions from both Pjqi and Ppiasma and is 



given by   PNL Ppiasma K?NL + pplasma ) as shown in Ref 36- Typically Ppiasma » PNL, so 

that the nonlinear self focusing power is due to bound electrons and is equal to Pj^L   . 

Finally, the term describing the depletion of laser energy due to ionization is given by 

Sim{r,t) = -%nik0^?£-A{r,t), (12) 
c     ot 

where Uion is the characteristic ionization energy. For example, the ionization energy for 02 is 

12.1 eV while for N2 it is 15.6 eV. 

iv) Full Nonlinear Three-Dimensional Propagation Equation 

Substituting Eqs. (4)-(12) into Eq. (3) results in the following nonlinear propagation 

equation for the laser envelope, 

[V2
X +AK 2 _^JL 

c2 

2
 f ,.   ^\ a a2 

+ 2ik„— + 
°dz   dz2 

+ 2/^(1-«! /2)A - (l-a2)-4y + '«3 — -4T ^(r'/} = 
c dct dc2t2 a>o dc3t3 

^(r,0, 

(13) 

where the summation in Eq. (4) has been limited to l<3 and zlA^ = (l-a0 )a>£ IcA - k0 . 

It proves useful to transform the independent variables from z, t to z, r, where 

r-t-zlvg and vg will be set equal to the linear group velocity of the pulse. In terms of the 

new variables the derivatives transform as, d/dt ^ d/dr and d/dz -> d/dz - v~g d/dr. 

Under this transformation, Eq. (13) becomes 



[Vl+AK2- 
2f      v ^ 

v     ffl
0y 

„.,  d    2d2      d2 

ö dz     ß   dzdci     dz' 

c   der a   2   2 dc T 
+ ia3 

c     8" 

®o dc3T3 
]A(x,y,z,r) 

4w2c4 <y2 c2   we ÖCT c^ 

.2, 2 

4/TC 
A(x,y,z,x), 

(14) 

-1 where <d/2 = (l-«i I2)(00 - ßg  ck0 and ßg = vg/c. 

The wavenumber £0 and group velocity v„ appearing in Eq. (14) are as yet unspecified. 

It is convenient to choose them so that the form of the propagation equation is simplified. 

Choosing AK = 0 and AQ = 0 defines the carrier wavenumber and linear group velocity 

1/2 respectively as k0 = (\-a0)        co0 Ic - n0co0 Ic, and 

v„ = cn0 /(!-«!) = cl{n0 + co0dn0 ldco0). Taking AK = AD = 0, the propagation equation 

simplifies to 

1    x      c2 + 2ik„ — 
5    2   a2 

° dz     ß   dzdcx     dz' 

2 ,    a       d c       &       1  A, ^ c  Kßl —rT + la3 TT J A(x,y,z,r) a   2   2 dc x ®o dc3x3 

'colnln, lA2 +_^-i\A\2 -^-*L + 8w*n ^^L + ^ZLQV 

V 
Anc 2    4      2 

4/B    C*  ß>o c2   we IJI2  dci 
y 

A(x,y,z,x) 

(15) 



Equation (15) describes the 3D evolution of the complex laser field amplitude, A(x, y, z, r). The 

self-consistent model employed here involves the solution of Eq. (15) along with equations that 

describe the response of the medium (air) to the laser field. In Eq.(15), the linear dispersion 

response is obtained from Eq. (A 16), while the nonlinear bound electron response is given by Eq. 

(B6). The stimulated Raman response is obtained from Eqs. (B9), (BIO) and (Bl 1). Plasma 

effects, wakefields and relativistic effects are given in Eq. (B20) while Eq. (B26) provides the 

expression for pulse energy depletion due to ionization. Finally, photoionization rates are given 

in the following section. 

A 3D numerical simulation based on solving Eqs. (15) together with the medium reponse 

has been developed which places the laser pulse on a Cartesian (x,y,x) grid, allowing for the 

modeling of asymmetric pulse shapes and laser filamentation. The laser pulse is advanced in z 

according to Eq. (15) using a split-step method [38] in which the linear terms are advanced in 

Fourier space, while the nonlinear terms are handled in coordinate space. The equations 

describing ionization, wakefield generation and Raman scattering are solved at each z-step by a    ■ 

4th order Runga-Kutta integration. To facilitate computation of the plasma wakefield, the term 

c2VxVxE,„ has been neglected and the approximation V « V± - (ez I vg)(d/dr) has been 

made in Eq. (B19) and in using Gauss's equation. 

III. IONIZATION, FILAMENTATION AND WHITE LIGHT GENERATION 

In the following subsections we use the theoretical model presented in the previous 

section to analyze ionization, filamentation, and spectral broadening of short, intense laser pulses 

in air. The analyses of optical filament propagation and white light generation consist of 

substituting a self-similar form for the solution of the complex amplitude into a reduced version 

10 



of Eq. (15) and obtaining equations for such quantities as the laser spot size, phase, curvature, 

and instantaneous frequency. While these analyses are not meant to be rigorous, they can 

provide some quantitative understanding of the processes considered. 

i) Photo-Ionization 

The free electron density in air can change because of ionization, recombination and 

attachment processes. The rate equation for electron density ne is 

^ = Wn„-tine-ßrnlt (16) 
dt 

where nn is the neutral gas density, Wis the photoionization rate, 77 is the electron-attachment 

rate coefficient and ßr is the recombination coefficient. Empirical relationships for the 

attachment and recombination rates in air are available [39]. The recombination time is 

zr -\l{ßrne) , where ßr « 3.7xlCT8 cm3/sec [14]. As an example, for a plasma with 

density of ne = 1016cm~3, the recombination time is rr « 2.7nsec. The attachment time is 

expressible as z^ = l/rj, and for typical atmospheric parameters and laser intensities considered 

here r^ is on the order of 1 jasec. Since the laser pulses of interest here have a duration of 1 

psec or less, recombination and attachment processes play a negligible role in the propagation of 

a single pulse. 

For short laser pulses, free electrons are generated by multi-photon and tunneling 

processes; avalanche ionization is not significant. The principal constituents of air are nitrogen 

and oxygen and hence the total photoionization rate can be written approximately as 

11 



W = 0.8 WN  + 0.2 W0 , corresponding to the proportion of YV2 and 02 molecules in normal 

atmosphere. For either one of these species the ionization rate takes different forms according to 

the value of the Keldysh parameter yK [40], i.e., 

YK =2.31xlOc tffeJeV] 
Ml 

r[um]/[W/cm2] 
(17) 

where JJ-    is the ionization energy. The value of the Keldysh parameter identifies the multi- ' ion 

photon (YK»\) and the tunneling {yK « 1) regimes. In the multi-photon regime the 

ionization rate is [41] 

W     =^^ mp     (£-\)\ V.    Jmp     J (18) 

where I(r, z, z) is the intensity, Imp =hco   I cxmp, <jmp is a cross section determined 

— 1R       7 empirically [25, 42] to be equal to 6.4x10       cm   for short pulses and £ is an integer denoting 

the number of photons needed for ionization, i.e., £ = Int[Uion Ihco + 1]. The characteristic 

multi-photon ionization intensity for a A - 1/mi laser pulse is Imp =5.8x10    W/cm   . In the 

tunneling regime, the time-averaged ionization rate for a linearly polarized laser pulse is [40] 

Wtun = 4^tunn0 
U inn I  Iff ion 

K~H   J U, 
exp 

V i  J 

^ ion 

\UH j 

3/2 
(liA 
I / J 

1/2 

(19) 

16 where Q0 =4.1x10 sec is the fundamental atomic frequency, In = 3.6x 10 W/cm and Un 

13.6 eV is the ionization energy of hydrogen. Finally, since the peak laser intensity in a guided 

filament is typically ~1013 W/cm2 , the ionization process is neither purely multi-photon 

12 



(7<1012 W/cm2) nor tunneling (7>1014 W/cm2). In the intermediate {yK ~ 1) regime an 

analytical fit is employed, having the form Wx = ax I ^ +Kl "( ". In the expressions for the 

ionization rates atun , omp , ax, K\, and K^ are fitting constants chosen to match experimental 

measurements. As an example, Fig. 2 is a plot of the ionization rate versus intensity for a laser 

wavelength of 0.8 p.m. The fitting constants for this plot are chosen to reproduce the 

experimentally measured short-pulse ionization rate reported in Refs. 25 and 42. 

ii) Filamentation in Neutral Air 

Perturbations or hot spots on the intensity profile of a laser beam can grow as a result of a 

filamentation instability. Filamentation, i.e., transverse break-up, of a laser beam is due to the 

interplay between diffraction and nonlinear self-focusing. Consider a laser beam propagating in 

a neutral gas for which the nonlinear focusing power is PNL and the transverse laser intensity 

profile is slightly perturbed by a small, localized hot spot. The spatial growth rate of this 

perturbation due to the filamentation instability [36, 43] is given by 

\l/2 

r = -A 
«rx_[_ 

3TTI        1 
(20) 

NL        xj_ 

where / is the laser intensity and xj_ is the characteristic transverse dimension of the filament, 

i.e., spot size. As a function of the dimension of the filament, the growth rate vanishes for 

1/9 xl  - xmin s [PNL ^n-01      > reaches a maximum equal to -Tmax = 3AI/(2P^i) at 

xj_ = V2 XJJJJJJ , and decreases inversely with xx as x± —> co. At maximum growth rate the 

power within the filament is roughly equal to PNL- It is therefore expected that a laser beam with 

a power P will break-up into N filaments where N < PI' P^L . As an example, the nonlinear 

13 



focusing power associated with air for a lum wavelength laser is in the range of- 2 GW; 

therefore a 100 GW laser pulse may eventually break-up into a few tens of filaments. 

iii) White Light Generation 

The nonlinear interaction of an intense, short laser pulse in the atmosphere can result in 

significant spectral broadening due to self phase modulation. The phase of the laser field 

becomes modulated through the time dependent refractive index by nonlinear effects, ionization, 

Raman processes, etc. Although 3D effects also play an important role in spectral broadening a 

ID analysis is useful. The solution of the laser pulse propagation equation in ID has the form 

A(Z,T) = B(z,T)exp(i0(z,r)) where the amplitude, B and phase, 6 are real functions of 

z and r. The instantaneous frequency of the pulse on axis can be defined as 

ü)(Z,T) = ü)0 . (21) 
ox 

To determine dd/drv/e rewrite the full nonlinear propagation equation in Eq. (15) in the form 

2n™=-{»1i'-*)-'£)4A- (22) 
oz cl 

where n(z, r) is the index of refraction in configuration space variables. For the present 

purposes, only the terms contributing to the index of refraction from bound electrons, Eq. (7), 

Raman scattering, Eq. (8), and the plasma, Eq. (9), will be retained. The bound electron and 

Raman contributions are given in Eq. (B15) while the plasma contribution to the index is 

- a>p{z,r)l 2n0(OQ . The nonlinear index can be written as 

Sn = n(z,r) - n0 = 5nbound + önRaman + 8npiasma, this is, 

Sn(r,r) = n2 I(r,r) - nR f_^ dT'W(r')R(r - r')I(r,r') - a)2p{z,r)l2n0a>l   ,  (23) 
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where nR is the Raman contribution to the nonlinear index for long pulses, W(r) is the 

population inversion variable, 

R(r) = 
ra>i+rp 

0)R 

e    2T sm(coRr), (24) 

J 

is the Green function for the Raman process normalized such that J drR(r) = 1, coR is the 
0 

characteristic Raman frequency and T2 is a phenomenological damping rate (see appendix B for 

the details). In the remainder of the paper we will assume negligible population inversion, 

W{T) « -1. To obtain the instantaneous frequency along the pulse we substitute the 

representation of the complex amplitude A into Eq. (22) with the result 

(25a) 

(25b) 

where 8nr (Srij) is the real (imaginary) part of 8n, which is assumed small compared to unity. 

The instantaneous frequency spread along the pulse is given by Eq. (21), together with Eq. (25a), 

dz ~ 
^0 

c 
-Snr(z,r), 

8ln(B) 

dz 
« 

c 
r) 

8 (o(z, r) = a>(z, r) - G)0  = 
a>0 r d8nr(z',r)    , 

■J dr 
dz'. (26) 

Note that only the nonlinear terms in the refractive index will create new frequencies, the linear 

terms redistribute the frequencies within the pulse. The instantaneous frequency spread is 

8co = 8cobound + 8<aRaman + 8(opiasma, that is 

8ci)(z, r) 
dr 

-n2~ + nR\dr'W{r') 
8R(T-T') 1      3« 

2   \ 

dr 2n0a>l   dr 

a0z 
(27) 
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where I = cn0B
2 /STT is the intensity. 

As an example, consider a laser pulse with wavelength Ä = 0.775 ju m , amplitude 

A(Z,T) = TJUKIQIC sinOr/rJ, for 0<T<TL, and zero otherwise, peak intensity 

I0 = 5 x 1013W/cm2, and pulse duration rL = 500 fsec propagating in air. For the short pulse 

regime, the bound electron and Raman effects are assumed to have the numerical values 

n2 = nR   = 3xlO~19cm2/W, a>R = 1.6xl013 sec-1, and r2 = 1.3 xlO13 sec"1 [44]. For the 

plasma term, the dominant ionization mechanism is taken to be multi-photon ionization of 02 so 

that the ionization rate is given by Eq. (18) with I = 8, for A = 0.775 um. 

For these parameters, Fig. 3a plots the individual contributions to Sn, given by Eq. (23), 

due to bound electrons, Raman scattering, and plasma. Bound electron effects produce an 

increase in the refractive index that is proportional to the laser intensity while the generation of 

plasma causes the refractive index to decrease from the front of the pulse to the back. The 

Raman response causes an increase in the refractive index at the front and peak of the pulse and a 

decrease at the back. The sum of the individual contributions to the refractive index, plotted in 

Fig. 3b, shows that for these parameters, the variation of the refractive index is of the order 10" . 

Figure 4a plots the normalized instantaneous frequency shifts due to bound electrons, 

stimulated Raman scattering, and plasma after propagating for 50 cm in air. For these 

parameters the variation in the frequency shifts, due to the various effects, are comparable in 

magnitude. The bound electrons produce a red shift at the front of the pulse and a blue shift at 

the back while ionization produces a blue shift across the entire pulse. Stimulated Raman 

scattering produces a red shift near the front of the pulse and a blue shift at the back. The net 
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frequency shift, i.e., the sum of the bound electron, plasma, and Raman contributions, plotted in 

Fig. 4b, shows a 20% red shift at the front of the pulse and a larger 60% blue shift at the back. 

IV. SELF-GUIDED PROPAGATION OF AN IONIZING LASER PULSE 

In this section, long range propagation of an ionizing laser filament in air is considered. 

The propagation distance of a laser pulse in air is limited by a number of processes. Two 

fundamental laser pulse propagation mechanisms that can in principle result in extended 

propagation distances are i) moving foci and ii) self-guiding. In the moving foci mechanism the 

focal length depends on laser power through the optical Kerr effect and different temporal slices 

of the laser pulse focus at different distances [45,46]. This can give the illusion of extended 

propagation. However, only an infinitesimal fraction of the laser energy is propagated over 

extended distances. In the self-guiding mechanism extended propagation distances can be 

obtained by balancing the defocusing effects of diffraction and plasma formation against 

nonlinear atomic focusing, i.e., Kerr effect. In self-guiding, losses such as ionization can deplete 

the laser pulse energy and significantly limit the propagation distance, as shown below. 

The process of ionization and optical filament propagation can be analyzed by retaining 

diffraction, the nonlinear refractive index, plasma effects and laser pulse energy depletion due to 

ionization in Eq. (15), i.e., 

( ,2    ,   „,,    d   ,     \A<        ^2       ^(r>r)   ,   S7Tik0Uiondne^ 
V|  + 2ik0^- + r\A(r,z,rf - -£-^— + 

dz r2 c     \A\
1
   dr 

A(T,Z,T) = 0 

,        (28) 

2    2 where y = (00n0 «2 l^nc . 

i) Source Dependent Expansion Method 

17 



The following analysis of Eq. (28) is based on the source-dependent expansion (SDE) 

method which was originally developed in Ref. [47]. In the SDE formulation a reduced wave 

equation of the general form 

Vi + 2ik0—\A(r,z,T) = M{r,z,z)A(r,z,z), (29) 
V dz J 

is solved by a variation of parameter technique where M(r, z, z) is a known nonlinear function of 

A{r, z, r). The complex electric field amplitude is given by 

A(r,z,r) = B(z,z) exp(/0(*,r))exp(-(l + ia(z,z))r2 /R2(z,z)), (30) 

where B is the field amplitude, 6 is the phase, R is the spot size, and a is related to the curvature 

of the wavefront. The quantities B, 9, R, and a are real functions of z and z. Using the SDE 

method a set of self-consistent coupled equations for the pulse amplitude B(z, z), phase 6{z,z), 

curvature a(z, z), and spot size R(z, z), can be derived. Applying the SDE method we find 

J_^M = F. (31a) 
BR    dz " 

dl + (1 + ^2) + «M _ L^L = -F (31b) 
dz k0R

2 Rdz       2dz 

1 dR 2a „ ,~, , 

Rdz       k0R
2 

1 da       (1 + a ) „ „ ,-,, ,x 
-— + ^ ^ = -Gr - aG,, (3Id) 
2Sz        yt0JR2 

where the subscripts (r, i) denote the real and imaginary parts of the function respectively. The 

details of a related derivation using the SDE method can be found in Ref. [48]. The complex 

functions F and G used in Eqs. (31) are given by 



F(z,r) = -1— \d(2r2 /R2)M(r,z,r)exp(-2r2 IR2), (32a) 

G(z,r) = -^—jd(2r2/R2)M(r,z,r)(l - 2r2 / R2 )exp(-2r2 IR2). (32b) 
2.Kn 

Equations (31) can be combined to give an equation for the pulse power and spot size, 

1 dP 

P dz 2Fi, (33a) 

-(l + k0R
2Gr)- 

dz2     klRJ 

( „dR dGt 2— + RGj   Gj + R^- = 0. 
dz J di 

(33b) 

>2 n2 where P(z,r)-cR  5/16 is the laser power. For the present problem we find from Eq. (28) 

that 

M(r,z,r) = -y\A(r,z,r)\    + 
2      cop(r,z,r)      %nik0 Uion dne(r,z,r) 

A 2        Or 
(34) 

Substituting Eq. (34) into Eqs.(32) gives 

F(z,r) 
2kr 

LB
2 + J—^JL-i %nk° 1 Uion drie° 

2 i + l c2 c    t B
1
     dx 

(35a) 

G(z,r) = 
2kr 

LB
2 +     £    ^P

0
 - t uk° ^ ~1} Uion drieo 

(£ + l)2  c2 c       £2      B2    dT 
(35b) 

Finally, substituting Eqs. (35) into Eqs.(33) the laser pulse power and spot size are found to be 

given by 

dP_ _ _n_        Rz dneo 
a      ~~       n     ion    „      ~ dz 2 £    or 

(36a) 

and 
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d2 R 

dz2       k2 R3 

P 2n£        D2 

P
NL    (e+iy 

(l-l) 1 
2£     p} 

R2<L 
dz 

' R^dP_ 

P  dz 
+ 

(£-1) 

2£ 

1B?_dP} 
P dz 

(36b) 

where PNL - cl2y - P?0 l{2n n2) is the nonlinear focusing power, l\s the number for photons 

needed for multi-photon ionization, Uion is the ionization energy, neo(z,r) is the electron 

density on axis generated by photo-ionization, the linear index has been set equal to unity 

(n0 = 1) and re = q2 Imc2 = 2.8xl0_13cm is the classical electron radius. The on-axis 

electron density generated by multi-photon ionization is given by Eq. (25) (evaluated at r = 0) 

dn" - ^(,=OK = lnC0°- 
r I A 

dr {l-\)\ \Jmp J 
(37) 

where I(z,r) = 2PKnR2) is the intensity on axis. Equation (36a) indicates that the laser 

power decreases as a function of propagation distance in the presence of ionization since energy 

is expended in ionizing the air. The quantity on the right hand side of the equation for the spot 

size, Eq. (36b), represents the effects of energy loss due to ionization and indicates that a 

matched, self-guided filament, is not possible. The single photon ionization case (£ = 1) is a 

special situation. The right hand side of Eq. (36b) vanishes, since the ionization term in Eq. (28) 

is independent of r for £ = 1, and the focusing properties of the pulse are not affected by the 

ionization process. 

ii) Self-Guiding Condition 

An approximate equilibrium of the filament's spot size can be found when the energy 

depletion due to ionization is low. Neglecting ionization on the right hand side of Eq. (36b) and 
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taking dR/dz = 0, gives an approximate equilibrium condition in terms of the filament power, 

spot size and on axis electron density 

2nl 
Pea(r) = PNL 1  + 

C + l) 
jreReq(r)neo(r) (38) 

where the subscript eq denotes the equilibrium value. The electron density dependence can be 

removed by differentiating Eq. (38) with respect to r, and using Eq. (37). The resulting 

equilibrium condition is in terms of a differential equation 

P£(r) _d_ 

dr 

rP(r) - 1A 

R\T) 
n, ion   ~      9« 

R(r)u 
(39) 

where P(r) = Peq(r)/PNL, R(r) = Req(r)/Req(0) and 

^ *ion 
K 1   ^RUo) 

{i + lf (*-l)!c2    ^ 
P; NL 

\*Riq<Mmpl*J 
a>o> (40) 

vl/2 where a>n = (Anq nn Im)      . Since there is no plasma at the head of the pulse to counteract 

self-focusing, the initial condition on the power is P(0) = 1. Consider a particular set of 

examples for which the spot size is taken to vary linearly from the front of the pulse to the back, 

i.e., R(T) = 1 + ST ITR . Figure 5 plots solutions ofEq. (39), i.e., power versus r for several 

values of e corresponding to cases in which the spot size is increasing, constant, or decreasing 

with r. The laser wavelength is taken to be X = 0.775 urn, P^L = 1.7 GW, and multi-photon 

ionization of O2 is assumed, i.e., £ = 8. To counteract plasma defocusing the laser power must 

increase with r to maintain equilibrium. For these parameters, the variation of the power along 

the pulse is the smallest for the constant spot size example. 

iii) Pulse Energy Depletion Due to Ionization and Maximum Propagation Distance 
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The rate of change of laser pulse energy can be found by integrating Eq. (36a) over the 

pulse length 

dBpuise        n Uion 7  ,   „2 3«, IdrR2^-, (41) 
„ dr dz 2    £     0 

where Bpu!se(z) -   \drP{z,r) is the pulse energy and rL is the pulse duration. Equation (41) 
0 

can be approximately evaluated by taking the laser spot size to be nearly constant, i.e., 

independent of r, and using the approximate equilibrium condition in Eq. (38), 

dEpuhe       Uion{£ + \)2( P(rL)      ^ 1 
PNL J 

(42) 
dz 4re      i

2 

The energy loss rate is independent of the number of photons needed to ionize the air molecules 

when I is large. The maximum distance a pulse can propagate Lmax can be estimated by 

assuming that all the pulse energy goes into ionizing the air, 

4re       I
2 B pulse (°) (43^ 

where Epulse (0) is the initial laser pulse energy. In principle, extended propagation or self- 

guiding is possible only when the laser pulse power is approximately equal to, but slightly 

greater than, the nonlinear focusing power which for air is P^i « 2GW. 

iv) Propagation of an Ionizing Laser Pulse 

Equations (36) are solved numerically to illustrate an example of high intensity pulse 

propagation in air. We consider a laser pulse with wavelength X = 0.775 um , and a uniform 

initial spot size R0 = 50 pm, which corresponds to a Rayleigh length of ZR = 7t Rl IX «lern. 
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The initial intensity at the front of the pulse is 70(r = 0) = 4.3 x 1013 W/cm2. In calculating the 

ionization rate, we assume multi-photon ionization of Oj so that £=8, A - 0.775 pm and 

t//o„ = 12.1 eV. The initial power profile is chosen to correspond to an equilibrium given by Eq. 

(38). The equilibrium power profile is perturbed by a 0.1% amplitude modulation and its 

evolution shown in Fig. 6. For the first 10 Rayleigh lengths, power is depleted uniformly 

throughout the pulse by ionization. As the back of the pulse is defocused by the presence of 

plasma, the intensity drops and ionization ceases. The front of the pulse remains focused and 

continues to ionize and lose energy. This leads to a localized depletion of power at the head of 

the pulse which is evident in the power profile at z = 40 ZR. For z > 40 ZR, the pulse intensity 

decreases to a level that energy losses and defocusing due to ionization become negligible. The 

result is that the power profile remains relatively unchanged for z > 40 ZR. The spot size and 

intensity, however, continue to evolve. 

Figure 7 shows the evolution of the laser spot size at three different locations within the 

pulse, i.e., the front (r = 0), within the body of the pulse (r = 12 fsec), and at the back 

(r = 120 fsec). The spot size remains relatively constant throughout the pulse for the first 10 

Rayleigh lengths of propagation before the equilibrium is lost. At z = 10 ZR , the front and back 

of the pulse start to diffract. The spot size at the back increases at a faster rate due to the initial 

defocusing caused by the plasma. However, the portion of the pulse around r = 12 fsec 

maintains at a constant spot size for over 200 Rayleigh lengths before diffracting. 

Figure 8 shows a shaded contour plot of the on-axis laser intensity as a function of r and 

z. The initial laser pulse at z = 0 spans the length of the plot. The defocusing of the front and 

back, leads the formation of a very short pulse (~ 5 fsec) in the first ~80 Rayleigh lengths of 

propagation. However, other mechanisms, which are not included in the reduced SDE equations, 
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e.g., group velocity dispersion, will affect the propagation of such short pulses. This short pulse, 

which is characterized by P ~ PNL, propagates for an additional 150 ZR before diffracting. This 

short pulse generation process resembles the relativistic guiding and pulse shortening schemes 

proposed in earlier works [49, 50], except that here, ionization contributes to the defocusing and 

guiding is accomplished through the Kerr effect associated with bound electrons. 

V COMPRESSION AND FOCUSING OF LASER PULSES IN AIR 

In this section the theoretical model together with simulations are used to study 

longitudinal and transverse compression and ionization of chirped laser pulses in the atmosphere. 

A low-intensity chirped laser pulse propagating in air can compress longitudinally due to linear 

group velocity dispersion and focus transversely due to nonlinear effects. For optimally chosen 

parameters, the longitudinal and transverse and focal distances can be made to coincide resulting 

in a rapid intensity increase and ionization near the focal region. 

The propagation of the high intensity laser pulse near the focal region is markedly 

different from its propagation far from focus, where the intensity is low. In the following 

subsections we consider separately the low-intensity propagation regime, where ionization and 

Raman processes are not important, and the propagation near focus, where the laser intensity 

becomes sufficiently high that ionization occurs. In the low-intensity regime a coupled set of 

equations for the laser spot size and pulse length are derived. Numerical solutions of the coupled 

equations are compared with the full numerical 3D simulation in the low intensity regime. 

Propagation near focus, in the high intensity regime, is examined using the full 3D numerical 

simulations. 
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The simulations model the propagation of-100 fsec pulses with 2 = 0.775 jum, and 

intensities as large as ~ 1013 W/cm2. The dominant plasma generation mechanism is the multi- 

photon ionization of 02, which although less abundant than N2, has a lower ionization energy. 

The ionization rate given by Eq. (18) with ^=8 agrees well with the ionization rate plotted in 

Fig. 2 over the intensity range of 1012 - 1014 W/cm2. The parameters used in modeling the 

rotational Raman response are the short pulse parameters given in appendix B, i.e., rotational 

frequency a>R - 16xl012 sec"1, damping rate r2 =1.3x10    sec- , and 

nR ««2 = 3xl0~19cm2/W. The GVD parameter is ß2 = 2.2xl0"31 sec2/cm and higher order 

dispersion has been neglected. For the range of intensities and pulse durations examined, the 

effects of collisional ionization, recombination, and plasma wakefields are not important and 

have also been neglected. For a typical plasma density of 1016 cm"3, peak intensity / ~ 1014 

W/cm2, pulse duration rL -100 fsec, and laser wavelength X = 0.775 u.m, the ratio of the pulse 

duration to the plasma period is coprL I In ~ 0.1 and the density perturbation associated with the 

wakefield is of the order 8ne lne ~10~5. A brief discussion of the numerical methods used in the 

simulation is found at end of Sec. II. 

i) Low Intensity Propagation Regime 

If the laser intensity is sufficiently low, the effects of ionization and Raman scattering 

will not be important and the propagation equation in a spatially varying atmospheric density, 

i.e., Eq. (15), reduces to 

,T 

Vi + 2ik0 — - c2k0ß2(z)—— + y(z)\A(r,z,rf 
öz de  T 

A(r,z,r) = 0. (44) 
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In writing Eq. (44) higher order dispersion has been neglected. The spatial variation of the 

atmosphere is taken into account mainly through the z-dependence of the group velocity 

dispersion coefficient, ß2(z), and the nonlinear refractive index, n2(z), both of which are 

proportional to the neutral density. In principle, the wavenumber k0 is also dependent on the 

neutral density, but is taken to be constant since the fractional change in k0 is less than ~10~ , 

as noted in the discussion of Eq. (3). 

Equation (44) can be solved numerically; however, a significant simplification of the 

equation is possible by assuming that the evolution of the laser pulse is self-similar. That is, we 

assume that the pulse is described by an analytical form that depends on certain spatially 

dependent parameters, such as the spot size and pulse duration of the laser pulse. With this 

assumption, a set of simplified coupled equations can be derived for the evolution of the spot 

size, pulse duration, amplitude and phase of the laser field. Assuming that the laser pulse has a 

Gaussian shape in both the transverse and longitudinal directions, the complex amplitude can be 

written as 

Ar*0 = B(.z) «<*> e~(1 + te<Z))'2/Ä2(Z) e-(' + '*),r2/r2(z)  , (45) 

where B is the field amplitude, 9 is the phase, R is the spot size, a is related to the curvature of 

the wavefront, 7 is the laser pulse duration, and ß is the chirp parameter. The quantities B, 0, T, 

R, a, ß are real and functions of the propagation distance z. The instantaneous frequency spread 

along the pulse, i.e., chirp, is SCO(Z,T) = 2 ß(z)zlT2{z), where ß<0(>0) results in a negative 

(positive) frequency chirp, i.e., frequency decreases (increases) towards the back of the pulse. 

The full frequency chip along the pulse from front to back, i.e., from 

T = -TtOT = T,lsöcofuH = 4ß/T. 
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Substituting Eq. (45) into Eq. (44), one obtains an identity in the variables r and r. 

Equating like powers of r and t, the following coupled equations for R and 7/are obtained, 

32R 4 (        E    1^ 

dz2       k2R3{        ?NLTJ 
(46a) 

tL = 4frE^^_ + ^l + ±dß±dT_^ (46b) 

dz2        K  PNL R
2
T

2
        T3        ßl   dz   dz' 

where E0 = PT is proportional to the laser pulse energy and is independent of z, 

P(z) = nR{z)2 I(z)/2 is the laser power, I(z) = cn0B
2{z)l%K is the intensity, PNL =PNL /4 

is the effective self focusing power, and PNL =2?012m0n2 defines the usual self-focusing 

power. The method used to obtain Eqs. (46) involved equating powers of rand r; a more 

rigorous derivation involving the source dependent expansion method [47] would result in PNL 

being equal to PNi. Hence, in numerical solutions of Eqs. (46) we set PNL = PNL . The first 

term on the right hand side of Eq. (46a) describes vacuum diffraction while the second term 

describes nonlinear self focusing, i.e., due to n2. Nonlinear self focusing dominates diffraction 

when P > Ptfi.  The curvature parameter, chirp, phase and energy evolve according to 

(47a) 

(47b) 

+ & + _}_ (47c) 

T2      hnR
2 PNL 

a(z) = 
k0RdR 

2   dz 

ß(z) = 
T   dT 

2ß2 dz ' 

de 2 

dz k0R
2 

dE0 = o, 
dz 

(47d) 
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respectively. Equation (47d) indicates that the pulse energy is conserved. 

The general expression for the Fourier transform of the pulse amplitude is 

co 

A(r,z,(o) -   {drA(r,z,r)exp(ia>T).   Using Eq. (45) we find that the Fourier pulse spectrum is 

given by 

S(a>) ~ exp 
f     T2(z)o)2   ^ 

4(1 + ß2 (z)) 
(48) 

The full Fourier spectral width at 1/e of the amplitude is 

Aco(z) 
4(1 + ß2(z)f2 

T(z) 
(49) 

where ß(z) is given by Eq. (47b). Using Eq. (47b) the instantaneous frequency spread, 

Sa>(z,z) = 2ß(z)TIT  (z), becomes 

5co(z, r) 
T      dT(z) 

ß2T{z)    dz 

Thus the frequency chirp vanishes along the entire pulse when the pulse length reaches a 

(50) 

minimum. 

For a spatially uniform neutral density and in the absence of nonlinear effects, i.e., 

«2=0, the solution of Eq. (46b) is [38] 

T(z) = T0 l + ßo 
f , ^ 2^ 

'TV \ZT ) 

Ml 

(51) 

and the chirp parameter is 

ß(*) = 
T   dT        1    To 

2ß2 dz     2ß2 ZT 
ß '0+{l + ß2}f- 

ZTJ 
(52) 
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where T0 = T{0), ß0 = ß(0), and ZT = T2 /2\ß2\ is the group velocity dispersion length. 

Substituting Eqs. (51) and (52) into Eq. (49) yields Am = 4(1 + ß2 )1/2 IT0, which indicates 

that for a linear atmosphere the Fourier spectral width is constant. In the absence of nonlinear 

effects, a minimum pulse length of T0 /(l + ß2)1/2 is reached at zlZT = -ß0 /(l + ß*), provided 

the chirp parameter is initially negative, ß0 <0. 

In the limit that the pulse length does not change appreciably, it can be shown from Eq. 

(46a) that the variation of the spot size with propagation distance is given by 

R(z) = Rc 1 - 2an + 
-R0 

«o - —-+ ! 
NL J 

v z ^ 
P. 7 

1/2 

(53) 

where ZÄ0 = k0R* 12. Equation (53) shows that whenP > P^, the spot size goes to zero in a 

distance 

zlZ    = g0±V(p/^L)-i (54) 

where the ± sign is chosen so that z is positive. 

We compare the solutions of Eqs. (46) and (47) with the full numerical simulation. In the 

present example, propagation through a uniform air density is considered. The initial laser pulse 

at z = 0 is described by Eq. (45) with X = 0.775um, R0 = 1cm, T0 = 0.66psec, ß0 = -20 (a 

negative chirp with öm^ulm0\ « 0.05), a0 - 0 (a collimated pulse), and initial peak intensity 

I0 = 109 W/cm2. In numerically solving Eqs. (46), the nonlinear index of air is taken to be 

n2 - 6 x 10 19 cm AY, which is larger than the experimentally measured value of 3 x 10 -19 

cm2/W [44]. This was done in order to approximate the inclusion of Raman effects into the 
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nonlinear refractive index. Raman effects can increase the nonlinear refractive index by an 

amount equal to the bound electron contribution, e.g., see Fig. 4. The ratio of the peak power to 

the nonlinear focusing power is P/PNL = 0.94 initially. For these parameters, the focal distance 

for both longitudinal and transverse compression is expected to be ~ 0.5 km based on Eqs. (46). 

Figures 9a and 9b show the evolution of the laser spot and pulse duration as the focal 

point is approached. The pulse length decreases almost linearly with z by a factor of- 10 from z 

= 0 to z ~ 0.49 km. The spot size decreases at a slower rate from z = 0 to z = 0.4 km and then 

falls rapidly over the last 0.1 km from focus. The corresponding evolution of the peak intensity 

is shown in Fig. 9c. The intensity increases relatively slowly over most of the propagation path, 

gaining a factor of ~ 10 over a distance of 0.4 km, and then increases rapidly by a factor of >30 

in a distance of ~ 0.1 km. The reduction in the spot size due to nonlinear self-focusing from z = 

0.4 km to z = 0.49 km is mainly responsible for the enhanced intensity gain observed near the 

focal point. The results of the full simulation, denoted by the points in Figs. 9a and 9b and the 

dashed curve in Fig. 9c, are in good agreement with the solution of Eqs. (47). Figure 10 shows 

surface plots of the distribution of laser intensity with r and transverse coordinate x at z = 0 and 

near focus at z = 0.49 km obtained from the full simulation. The laser pulse focuses both 

longitudinally and transversely such that the peak laser intensity at z = 0.49 km is ~ 3x10 

W/cm2, which is a factor of 300 larger than the initial intensity; note the change of scale between 

Figs 10a and 10b. 

ii) High Intensity Propagation Regime 

When the laser pulse is sufficiently intense, ~1013 W/cm2 for -100 fsec pulses, ionization 

processes, plasma defocusing, and Raman scattering effects become important. In this 

subsection, we simulate propagation of the laser pulse from the previous example through the 
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region of plasma generation. The output of the previous simulation is extrapolated for ~2 m 

using Eqs. (46) to numerically solve for the laser spot size, duration, and peak intensity close to 

the ionization region. The extrapolation was performed because of the computational difficulty 

in using the full nonlinear simulation to accurately model the large variation of the spot size near 

the focal point. The extrapolated results are then used to initialize the Gaussian laser pulse in 

this high intensity simulation which begins at z0 = 492 m . The propagation distance Az is 

measured relative to z0 , i.e., Az - z - z0. The pulse at Az = 0 is described by Eq. (45) with 

R = 0.25cm, T = 0.12psec, ß = 7.2 and a = 2 . The initial peak intensity I = 8.8xl012 

W/cm2 is below the intensity at which ionization effects become important. The initial ratio of 

the peak power to the nonlinear focusing power, P/PNL =2.5. 

Figure 11 shows the evolution of the peak laser intensity and peak plasma density near 

the focal point. From Az = 0 to Az = 5 cm self-focusing causes the peak intensity to increase by 

a factor of ~ 8. As the laser intensity reaches the ionization threshold, a plasma channel is 

formed which is highly localized near the laser pulse axis. The radius of the plasma channel is 

~20|im. Formation of a plasma channel counteracts the nonlinear focusing effect. FromAz = 

5 to Az = 20 cm, the peak intensity is limited to < 7xl013 W/cm2 while the peak plasma density 

is on average ~ 7.5x10    cm" . 

Figure 12 shows the evolution of the laser intensity profile from Az = 6.3 cm to Az = 16.8 

cm. The generation of a highly localized plasma channel at Az = 4 cm causes the trailing edge of 

the laser pulse to defocus and the pulse to shorten on-axis as shown in panel (a). Earlier parts of 

the pulse remain focused due to the absence of plasma. As the on-axis pulse length decreases, 

the plasma density also decreases thereby allowing the trailing parts of the pulse where P > PNL 
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to refocus. The refocusing of the trailing edge leads to the double-peaked intensity profile seen 

in panel (b). Subsequently, the intensity of the leading peak decreases due to diffraction until the 

intensity of the trailing peak becomes the global maximum [panel (c)]. At Az = 16.8 cm, the 

trailing peak is reconstituted in such a way that the laser intensity profile appears similar to that 

at Az = 7.6 cm. In earlier works [24] it was proposed that these recurrences underlie the 

experimentally observed long distance propagation of intense pulses in air. 

Since laser energy is lost to ionization whenever refocusing and plasma generation occur, 

the number of recurrences will be limited. Refocusing will not be possible when the amount of 

energy lost to ionization is sufficient to cause the pulse power to become less than the nonlinear 

self-focusing power. Figure 13 shows the pulse energy as a function of propagation distance. 

The sudden decrease in energy at Az = 5 cm corresponds to the location at which a plasma 

density of ~1017 cm"3 is generated. From Az = 5 cm to Az = 25 cm, ~7 % of the pulse energy is 

lost to ionization. Figure 14 shows the on-axis profile of the laser intensity and power 

(normalized to PNL) at Az = 16.5 cm. The power profile at Az = 16.5 cm remains relatively 

unchanged from its initial Gaussian profile indicating that there is little longitudinal energy 

transfer. Hence, the distortions in the laser intensity profile are caused mostly by transverse 

focusing. Note that a sufficient amount of power (P ~ 2 PNL) is present in the trailing edge of the 

pulse to allow for self-focusing. For this particular example however, it is not possible to 

numerically simulate propagation beyond Az = 25 cm due to the large amount of spectral 

broadening that occurs, causing the theoretical model to become invalid, e.g., at Az = 25 cm, 

| Sco | ~ 0.4ca0. 

Figure 15 shows that the on-axis Fourier spectrum of the laser pulse broadens with 

propagation distance. The asymmetry of the spectrum, i.e., the more prominent red shift, is 
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associated with the gradient of the laser intensity becoming larger at the front of the pulse than at 

the back [38]. At Az = 17.7 cm the blue-shifted part of the spectrum is sufficiently broad that it 

spans the visible spectrum indicating that white light is generated near the focal point. 

Modulations in the spectrum, which are prominent at Az = 15.2 cm, are caused by a self- 

interference effect which can be understood as follows. Initially, every axial position within the 

chirped laser pulse has a different frequency as shown in Fig. 16a. As the pulse propagates, Fig. 

16b shows that distortions in the laser envelope cause different axial positions of the pulse to 

have the same frequency. These positions represent waves with the same frequency but with 

different phase that can interfere constructively or destructively depending on the relative phase 

difference. This interference results in multi-peak structures in the spectrum [51]. 

iii) Vertical Propagation, Compression and Focusing 

We use Eqs. (46) to examine propagation in a spatially varying atmosphere. The spatial 

variation of air density is given by na{z) = «a(0)exp(-z/Za), where na(0) = 2.7 x 1019 cm" is 

the neutral density at sea level, and La = 8 km is the characteristic scale for the upward variation 

of the air density. The initial laser pulse is characterized by R0 = 28 cm, T0 =5 psec, I0 = 

3.2xl06 W/cm2, A, = 1.06 um, ß0 = -46 (a negative chirp with öcojull Ico0 « 0.02), and 

a0 = 10 (a focusing beam). The dashed curve in Fig. 17a shows the altitude variation of the air 

density. The solid curve shows the evolution of the peak laser intensity (normalized to its value 

at z = 0) with altitude. For these parameters the focal length, i.e., the distance at which the pulse 

duration and spot size are simultaneously minimized, is ~ 21 km. The intensity increases by a 

factor of 2xl04 at focus. Most of the intensity gain occurs within 5 km of the focal region 

where the density of air is relatively low. 
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Figure 17b shows the variation of laser spot size and pulse duration with z. From z = 0 to 

z ~ 20 km, the spot size decreases linearly with z, indicating that the transverse focusing is 

mostly linear, i.e., due to the wavefront curvature of the pulse. Nonlinear self-focusing becomes 

dominant over the final 2 km of propagation and causes the spot size to decrease more rapidly. 

In the absence of ionization and other higher order nonlinearities, the spot size collapses to zero 

at z ~ 22 km. The pulse duration decreases continually due to group velocity dispersion and is 

reduced by a factor of- 1/20 in the focal region. 

VI. SUMMARY 

In this paper we have investigated a number of key physical processes associated with 

short, intense laser pulses propagating in the atmosphere.  Some of the potential applications 

stem from the possibility of creating an atmospheric 'lamp' at a remote location with spectral 

characteristics that are similar to a white light source [4, 8, 9]. The applications range from 

remote sensing and ultraviolet fluorescence spectroscopy to electromagnetic countermeasures, 

hyperspectral imaging, differential absorption spectroscopy and induced atmospheric electrical 

discharges (artificial lightning) [10-18, 52], 

Nonlinear equations have been derived that include dispersion, nonlinear self-focusing, 

stimulated molecular rotational Raman scattering, multi-photon and tunneling ionization, pulse 

energy depletion due to ionization, atmospheric nonuniformity, relativistic focusing, and plasma 

wakefield generation.  The nonlinear equations have been used to analyze a number of 

phenomena, such as the compression and focusing of chirped laser pulses, laser filamentation, 

and white light generation. 
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The variation of the nonlinear refractive index and instantaneous frequency shift along an 

intense laser pulse in air has been calculated. The analytical results have been obtained by 

assuming a self-similar form for the laser envelope and deriving coupled envelope equations for 

the amplitude, phase, curvature and spot size. As an example, for a -500 fsec laser pulse, the 

frequency shifts associated with bound electrons, ionization, and Raman scattering are found to 

be comparable. The combined effects of bound electron nonlinearities, ionization, and Raman 

scattering produce a red shift at the front of the pulse and a larger blue shift at the back. 

Using the source dependent expansion method (SDE) a coupled set of equations for the 

spot size, laser power and electron density is derived. A necessary condition for an approximate 

equilibrium of a single optical filament has been derived assuming that the ionization rate is low. 

The equilibrium involves a balancing between nonlinear self-focusing, diffraction, and plasma 

defocusing and is shown to require a specific distribution of power along the filament. For the 

approximate equilibrium, the laser power at the head of the pulse equals the nonlinear focusing 

power and increases towards the back of the pulse. The increase in power is necessary to 

counteract the effect of plasma defocusing. When the laser intensity is sufficiently high to cause 

considerable energy depletion due to ionization, an equilibrium solution no longer exists and 

self-guided propagation is not possible. Numerical solutions of the SDE equations show that a 

-100 fsec laser pulse can propagate in a self-guided mode for -10 Rayleigh lengths, after which 

plasma defocusing erodes the front and back of the pulse. This defocusing leads to the formation 

of a very short - 5 fsec pulse which can propagate for - 100 Rayleigh lengths. 

A method for generating a remote spark in the atmosphere has been proposed and 

investigated. This method utilizes the dispersive and nonlinear properties of air to cause a low 

intensity chirped laser pulse to compress both longitudinally and transversely. For optimally 
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chosen parameters, the transverse and longitudinal focal lengths can be made to spatially 

coincide resulting in a rapid intensity increase, ionization, and white light generation in a 

localized region far from the source. 

Solutions of the envelope equations are found to agree well with full 3D simulations in 

the low intensity propagation regime far from the focal region. Near the focal spot where the 

intensity is large enough to ionize air, plasma filaments can be generated in a region ~ 1 m in 

extent and significant white light generation occurs. 
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Appendix A: Derivation of Linear Source Terms 

This appendix outlines the derivation of the linear source term given by Eq. (4), which 

describes effects associated with the linear polarization of bound electrons [38]. The linear 

source term due to bound electrons can be written as 

SL(r,z,t) = 4nc-2d2VL(r,t)/dt2 =SL{r,t)ei^ZJ)ex/2 + c.c, (Al) 

where P^ is the linear polarization field, the phase is y/(z, t) = k0z - a>0t, k0 and co0 are, 

respectively, the wave number and frequency of the carrier field and ex is a unit vector in the 

direction of polarization. The relationship between the Fourier transforms of the linear 

polarization field P^ and the laser electric field E is given by 

P^r,») = XiM E(r,co), (A2) 

where VL and E are the Fourier transforms of T?L and E y respectively, and %L(r,G>) is the 

frequency dependent linear scalar susceptibility which may also be a function of r. The 

convention for the Fourier transform pairs used here is 

1      °° 
VLM = -^=  \VL(r,t)e^dt, (A3) 

12% 

The relationship between PL and E is given by 

<L(r,t) = -J= fpL(r,ooK'u'fifo . (A4) 

Pi(r,0 = -TMX^-'OEM*', (A5) 
V2TC i 
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which in terms of Fourier transforms results in Eq. (A2). The polarization field in Eq. (A5) can 

be written as 

l    °° 
P£ (r, 0 = -±= \ %L (T) E(r, t - x) dz, (A6) 

V27t 0 

where, because of causality, %L (T) = 0 for r < 0, i.e., the polarization field at time t is due to 

the electric field prior to time /. The electric and polarization fields are represented in the form 

E(r,/) = 4r,/y>(z'/} ex 12 + c.c, (A7) 

Pz(r,0 = C(r,0e,>(z*°ex/2 + c.c., (A8) 

where A(r,t) and C(r,0 denote the complex amplitudes of the electric and polarization fields, 

respectively. 

To obtain the propagation equation describing the evolution of A(r,t) it is necessary to 

express C(r, t) in terms A(r, t).  Substituting the representation for the electric and polarization 

field, Eqs. (A7) and (A8), into Eq. (A6), multiplying both sides by exp(/o>o0 and equating like 

time scales we find that 

i    °° 
C(r,0 = -f= \XL{T)A{v,t-v)elco°x dr. (A9) 

2n 0 

Since %L(T) is localized near r = 0, the integral in Eq. (A9) can be approximately evaluated by 

expanding the electric field envelope, A{r,t-v) about t for small values of r, 

C(r,0 = -p=f^i(r) 
- /0-r>-    •> 

17,..        d     rL d^      TJ
 d~ 

27T o 
1 -r—+ 

dt       2 dt2       6 dp 

Noting that the derivatives of xi^o ) witn respect to COQ are given by 

A(r,t)e,0}°T dx. (A10) 
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1 
-i={V»XL(T)eto-x<ft = (-i) 
V27t   n 

;X„5"XL(C0O) 

da>" 
(All) 

where 

1     °° 

V2TI JL 

(A12) 

substitution of Eq.(A12) into Eq.(AlO) leads to 

C(   t)=Y ind"XLMdnA(r,t) (A13) 

The linear source term amplitude SL(r,t) must also be expressed in terms of the electric 

field envelope A(r,t). Following the same procedure used to obtain C(rj) in terms of A(r,i), 

we find that 

SL(r,t) = 
471 \    -i    °ip>2 

c2J 

1    td'%L(x) 

42% o     3T 

LK"' A(r,t-T)e"a''t dx 

4TI^ i' d'(oliM)dtA(r,t) 

V4'   Ji=o i\        5co ft' 
(A14) 

where we have assumed that iL{x) and d%L(T)/5T vanish at r = 0.  In obtaining Eq. (A14) the 

following identity was used 

di 
JV " K^*> e™°x dx = -(-/) (Al 5) 

The linear source term ^ (r, ?) can be rewritten as 

(A16) 

where the unitless coefficient a^ (r) is given by 
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a, (r) = 
(oi-2    d< 

£\    do. 
7(4%%L(&o)(02o). (A17) 

In terms of the conventional dispersion parameters ßi [38], defined by 

ßt = dlß{co)ldcol (ä = (0   , where ß(co) = (a>/c)[l + A%iL((ä)f2 = (a>/c)n(<ü), the coefficients 

are given by 

co 
l~2   a* 

o-t 
t\      dC0lr 

c2ß2(a0)-a>$ (Al 8) 

e.g. <x\ = 2 
(      c1 ^ 
1-— ßoßi 

«0 j 
a2=l-c 2{ßl  +ßoßi)^oc3 C2(ü0 ß\ßl+\ßoß3 

5 J 

-1 For the cases of interest it is sufficient to use the approximation y?j « c 
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Appendix B: Derivation of Nonlinear Source Terms 

In this Appendix the nonlinear source amplitude given by Eq. (6) is derived. It is 

convenient to write the nonlinear source term as 

SM,(M) = abound  + ^Raman  + $ plasma   + ^wake   +   $rel  + ^ion 

= SNL{rj)ei¥Mzxl'2 + C.C, (Bl) 

where the various contributions, S bound* $ Raman, s plasma , Swafe = Sreh s ion , represent, 

respectively, contributions from the third order nonlinearity associated with bound electrons, 

stimulated Raman scattering, plasma generation, wakefields, relativistic motion of free electrons, 

and laser energy depletion due to ionization. The various source terms are derived in the 

following subsections. 

a) Nonlinear Polarization of Bound Electrons 

In general, the nonlinear source term due to bound electrons, Kerr effect, is 

Sw(^,0 = ^VPiW(M)/a2=^(M)ei^e,/2 + c.c, (B2) 

where the phase is y/(z,t) =k0z - co0t. The nonlinear polarization field is given by [34, 35, 38] 

Pto«Brf(r,0 = ^J«L(E-E>,E(r,/), (B3) 

where XNL 
ls tne scalar third-order susceptibility of the neutral gas and the brackets ( )( denote 

a time average. In this approximation the third harmonic component of the nonlinear 

polarization field is neglected and the nonlinear response is assumed to be instantaneous. The 

refractive index is the sum of the linear and nonlinear contributions and in the absence of 

relativistic effects is expressible as 

n(r, a) = n0 (r, co) + n2I, (B4) 
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where / is the time averaged intensity and n2 is the nonlinear refractive index associated with 

bound electrons. Equation (B3) can be expressed in terms of n2, i.e., 

PtoimrfM = 7" (2«o«2/(r,/))E(r,0 = (%*-) cn2\A(r,tf E(r,0, ß5) 

where n0 is the linear index, «2 = \8;z"2 lnoc)%NL> J(r'0 = (C/4^)«0(E-E}/1 = CH0[4|   /8?r is 

the intensity and | «2I [ « "0 — 1 has been assumed.  Substituting Eq. (B5) into (B2) and using 

the envelope representation forE(r,f), i.e., Eq. (2a), the amplitude of the nonlinear source term 

is 

2   2 
SboUnd<r,z,t) = ^^\A(r,tf A{r,t) 

47rc (B6) 

b) Stimulated Non-Resonant Raman Scattering 

Stimulated Raman scattering of laser pulses propagating through air has been studied 

extensively [28, 53-63]. For altitudes below 100 km, the dominant Raman process for long 

pulses ( ~ nsec) is due to scattering from N2 molecules involving the S(8) rotational transition 

from the J=8 to J=6 rotational states, while the molecule remains in the vibrational ground state 

[55]. For a linearly polarized laser with wavelength 1.05 urn, experiments using long (~ nsec) 

pulses indicate that the Raman gain coefficient is -2.5 cm/TW [28]. The observed Raman shift 

for the S(8) transition is 75 cm"1 (Aco ~ 14x10    sec    ) while the characteristic relaxation time 

for excited states is typically 0.1 nsec at sea level. A number of experimental studies have 

employed shorter (-100 fsec) laser pulses to investigate Raman scattering. In particular, the gain 

coefficient and damping rate have been measured and found to be different from those 

appropriate for longer pulses [44]. 
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The theoretical model used here to incorporate the effects of stimulated rotational Raman 

scattering into the general nonlinear propagation equation is based on the standard density matrix 

formalism [64] with an envelope representation for the laser electric field, i.e., 

E(r,/) = (l/2)A(r,t)eiv(ZJ) e± + c.c, where A(r,t) is the complex amplitude, e± denotes a unit 

vector in the polarization direction and c.c. denotes the complex conjugate. The envelope 

representation allows for the generation of a multi-wave Raman spectrum, i.e., harmonics of the 

Stokes and anti-Stokes sidebands, as well as broadening of the individual lines. The model also 

describes the Raman response in the transient regime and accounts for the natural damping or 

relaxation of excited states and saturation due to the population depletion of the ground state. 

In our model, the molecular scatterer is assumed to have two nearby rotational 

eigenstates, 1 (the ground state) and 2, with corresponding energy levels Wl and W2, as well as 

an excited state, e.g., an electronic or translational state, with energy W3 » W2 -W\. Defining 

Q.nm - Cln - Q.m, where !2.is the eigenfrequency associated with statey, it is assumed that 

Q3], Q32 » a)0 » coR, where coR = Q2l is the fundamental rotational frequency. That is, the 

Raman process is non-resonant, and so state 3 is not populated. Because of the assumed 

frequency ordering, we can effectively take Q3] ~ Cl32 = Q. Furthermore, because, eigenstates 

are assumed to possess definite parity, direct transitions between states 1 and 2 are forbidden. 

Raman Stokes scattering consists of an upward transition from state (1) to a virtual level 

associated with state (3) followed by a transition from the virtual level down to state (2). In the 

process, a photon with frequency &$ = COQ - 02\, is emitted. Raman anti-Stokes scattering 

consists of an upward transition from state (2) to a virtual state followed by a transition from the 

virtual state down to state (1) thereby emitting a photon of frequency co^ - ^o + -^21 • Since 
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the population of state (2) is much smaller than that of state (1) in thermal equilibrium, the anti- 

Stokes lines are generally much weaker than the Stokes lines [34, 35]. 

Stimulated Raman scattering is associated with a nonlinear polarization field 

P       (r /) = PD     (r t)e
iy/U'n e / 2 + c.c., which gives rise to a source term in the propagation 

Raman V   '   / Raman \   '   / x ' ° 

equation for the laser envelope. The nonlinear source term is expressed in terms of the nonlinear 

polarization as 

SRamaiX^J) = ^d%amJr,t)/dr = SRaman(rj)e'^ cx /2 + c.c.. (B7) 

Based on the three-level model discussed above, it can be shown using a standard density matrix 

formalism [64] that the nonlinear polarization can be represented as 

P*am = ZLQ{t)A(r,t), (B8) 

where Q{t) is the unitless oscillator function which is determined by the system of equations 

fe + K + r?)ß + 2r2f .-A(l)\^f,      (B9) dt ot il A0 

T,(W-W0), (BIO) dW  _    n2
R   \A{r,tf( dO ^ 

dt        &„C2     A„ dt 
+ r2o 

where QR = juA0/h is the Rabi frequency associated with the peak laser amplitude A0, and 

ju is the dipole transition moment matrix element associated with transitions to state 3. The 

quantities I"\ and T2 are phenomenological damping rates which have been included 

heuristically. The quantity W is the difference between the normalized population densities of 

states 2 and 1, and W0 = W(t->-oo). For a medium in which all molecules are initially in the 

ground state, W0 = -1. 
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Assuming a slowly varying amplitude for the polarization, i.e., 

I d2pRamanldt2 I « ®0 I PRaman I,the source term for stimulated Raman scattering is given by 

c . (Bll) 

The solution of Eq. (B9) can be rewritten in the form 

O(r,0 = —^^-T    dt'W(t')R(t-t')I(r,t'), (B12) 

where 

R(t) = 
C 9 -r^O 

is the Green function for the Raman process, 

-r, t ■ sin (a>Rt), . (B13a) 

„Ä=1^4^L, (B,3b) 
c«o n nl COR + r2 

is the Raman contribution to the nonlinear index for long duration pulses (r>r2,coR) and R(t) 

is normalized such that,  \dtR(t) = 1. If only the Raman source term is retained on the right- 
0 

hand side of Eq. (15), it can be shown through a stability analysis [34, 35], that an initial Stokes 

perturbation 8A{z = 0) on a CW pump laser beam can grow exponentially, i.e., 

SA(z) = SA(0)exp(gIp z), with a maximum gain coefficient 

^_ZL_^_^g__L.t (B14) 
c  nl h2  c nr2' 

where /„is the pump intensity. Stokes, anti-Stokes coupling will reduce the gain coefficient. 
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The nonlinear polarization field in Eq. (B8) has a contribution which is third order in the 

field amplitude and thus can contribute to the nonlinear refractive index, n2. Including the 

bound electron and molecular Raman response, the total nonlinear refractive index is 

«Al(r,0 = "2 I(r,t) - nR f'    dt'W{t')R{t-f)I{vj'). (B15) 

For a constant amplitude laser pulse with duration tL, the field amplitude can be written as 

A = A0 (<9(r) - ©{z-ri)), where r = t - zlc . We assume that there is negligible population 

inversion, W(t) « -1. With these approximations, Eqs. (B13) and (B14) indicate that the total 

nonlinear index within the pulse i.e., 0 < r < rL, is 

*NM = n2   + nR V ~ e~F2T
(COS(CDRT) + (r2 /o)R)sm(a>RT))l (B16) 

where nR can be written in terms of the gain, 

nR=2^-—^-cg. (B17) 
®o  (OR + r2 

In the long pulse limit (r » l/r2), nR represents the effective nonlinear index due to Raman 

effects and the total nonlinear refractive index is nNL = n2 + nR . For pulses short compared 

with the characteristic Raman times (r « \lcoR, r « UT2), the nonlinear refractive index is 

due to purely the bound electron response, i.e., n^i - n2. 

Experiments suggest the Raman response is a sensitive function of the pulse duration. 

For a long (~nsec) laser with wavelength ljum (co0 - 1.9x1015 sec- ), the rotational Raman 

response is dominated by the S(8) rotational transition from J = 8 to J = 6, which is characterized 

by 0Ä~1.4xlO13sec_1, T2 ~1010 sec"1, and g~2.5 cm/TW for air at STP [28,56]. For these 

parameters, the nonlinear refractive index due to rotational Raman processes is 
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nR = 5.6 x ICT20 cm2/W . Assuming that bound electron and Raman effects are the dominant 

contributions to the nonlinear refractive index, the empirically determined value of 

nNL ~ n2 + nR m the l°nS Pu'se regime is ~ 5.6xl0"19 cm2/W, giving nR lnNL «0.1.  More 

recent experiments, which propagate much shorter -100 fsec laser pulses with wavelength 

X = 0.8 jam through air, suggest that the effective parameters for the short pulse regime are 

mR «1.6xl013 sec"1, nR   « n2 «3x10 19 cm2/W,and r2«1.3xl013 sec"1 [44] giving an 

effective gain coefficient of g « 0.025 cm/TW . 

c) Plasma, Wakefield, and Relativistic Source Terms 

The source term in the wave equation due to the motion of free electrons is given by 

free (4x1' c2)dil'dt, where the plasma current density J satisfies the equation 

— + v „ J= -JL 

dt      e      4% 

2 f 
1 + 

5«„ 

«. 
E(r,0- (B18) 

In Eq. (B18), cop (r, t) = \4nq2ng (r,/)/mf   is the plasma frequency, ne (r, t) is the electron 

density, 5ne(r, t) is the plasma density perturbation due to wakefields, and veis the collision 

12        —1 frequency of electrons with neutrals and ions, for air ve « 3x10 sec [19,24]. Equation 

(B18) is valid even if the plasma density is increasing because of ionization. It can be shown 

that the electric field associated with 8ne (r, t)  satisfies the equation [65] 

+ ciVxVx + <y;(r,0 
dt' 

L=i^atf. Jw 
4w    col 

(B19) 

The wakefield density perturbation is then obtained from Sne = V ■ Ew 14K q. Writing the laser 

electric field and plasma source terms as, E(r,/) = A(r,t) e'w(-z,t-> ex/2 + c.c. and 
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Sßee (r, z,t) = Sfree (r,t) e'>(z,/) ex/2 + c.c., respectively, Eq. (B18) yields 

S free 

a>p(r,i) 
1 + 

6ne     dm 

n0       m 
1-A 

co 
A(r,t) (B20) 

o j 

In writing Eq. (B20), the plasma current density J was obtained to order ve lco0 « 1. The 

plasma frequency in Eq. (B20) contains contributions from ionization and relativistic electron 

motion. In order to write out each contribution explicitly, the electron mass is written as 

m + Sm, where m is the electron rest mass and an is the modification due to relativistic motion 

of the electron in the laser field. To second order in the field amplitude the fractional change in 

the electron's mass is 

x   i       if   q 5mlm - — —-— 
A\jnc(o0 

\A(r,tf (B21) 

In writing Eq. (B21) it has been assumed that \qA/mceo0\« 1, i.e., the weakly relativistic limit. 

The magnitude of qAlmcco0 is often referred to as the laser strength parameter. For a linearly 

polarized laser beam,   | qAlmca>0 \ = 8.6 x\0~10 A[\im] 71/2[W/cm2], where Ä is the 

wavelength in microns and / is the intensity in W/cm . 

Using Eq. (B21), Eq. (B20) can be written explicitly as Sß.ee = Spiasma + Srei + Swaj<£, 

where 

S plasma 
(D2

p(r,t) 
1-/- 

0)Q 
A(r,t) 

^rel -' 
vl(r,ty -2 

4c' 

q\Ar,t)\ 

mca>Q 
A(r,t), 

(B22a) 

(B22b) 
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^y^t)5ne ^ 
C           ne 

5 (B22c) 

where it has been assumed that 5m Im « 1, ve /CD0 « 1 and |*.|/H. «1 

d) Laser Energy Depletion Due to Ionization 

To derive the source term describing the depletion of the laser energy due to ionization 

we note that the rate of change of the total field energy (electric and magnetic) due to only 

ionization is 

dWf 
= Uion\ne(x,y,z,T)da, (B23) 

dz 

where Wf is the total field energy, Uion is the ionization energy, and da is the differential 

cross sectional area. The total field energy can be written as 

Wf =-\dajd(cT)(E-E)t/47T, (B24) 

where ( ) denotes a time average, (E • E)f = \A\   / 2 and - cdr is the differential in the z 

direction.  Substituting Eq. (B24) into (B23) we find that 

dz der 

Equation (B25) accounts for field energy lost due to ionization and indicates that an additional 

source term given by 

Sion = Sxik0^f^A, (B26) 
\A\   dCT 

should be present to properly account for energy depletion. 
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Chirped Laser Pulse Air 

/ 
Plasma Filaments Optical Filaments 

Figure 1: Schematic showing filamentation of a chirped laser pulse in air. 
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Figure 2: Dependence of ionization rate on laser intensity. Dashed lines 
delineate approximate tunneling (jK < 0.5) and multi-photon (JK > 5) 
ionization regimes. 
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Figure 3: (a) Variations of the nonlinear refractive index due to bound elec- 
trons, Raman effects, and plasma generation, as given by Eq. (23) versus 
pulse time, r = t - z/vg, for a laser pulse with wavelength A = 0.775 yum, 
peak intensity I0 = 5 x 1013W/cm2, and pulse duration rL = 500 fs. (b) To- 
tal nonlinear refractive index (solid curve), i.e., 5nbound + SnRaman + Snpiasma, 
and laser intensity (dashed curve) versus r. 
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Figure 4: (a) Instantaneous frequency shift, Eq. (27), due to bound electrons, 
Raman effects, and plasma versus pulse time r = t- z/vg after propagating 
0.5 m in air. A laser pulse with wavelength A = 0.775/im, peak intensity 
I0 — 5 x 1013W/cm2, and pulse duration rL = 500 fs is assumed, (b) Total 
frequency shift (solid curve), i.e., Su}bound + 8uRaman + Scüpiasma and laser 
intensity (dashed curve) versus r. 
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Figure 5: Dependence of normalized laser power on pulse time, r — t- z/vg, 
for the equilibrium described by Eq. (39). The spot size variation is assumed 
to have the form R(r)/Req = 1 + CT/TR with TR = 120 fsec and Req = 50/im. 
The laser pulse has wavelength A = 0.775 /mi. Multi-photon ionization of 02 

(£ = 8 for A = 0.775/im) and PNL = 1.7 GW are assumed. 
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Figure 6: Solutions of the power and spot size equations, Eqs. (36), showing 
power profiles vs. pulse time r = t - z/vg at different propagation distances. 
The power profile at z = 0 is an equilibrium described by Eq. (38). For the 
initial laser pulse, A = 0.775 /im, I0(r = 0) = 4.3xlO13 W/cm2, T0 = 120 fsec, 
R0(T) = 50/im, i.e., an initially uniform spot size, and Rayleigh length ZR = 
irRl/X = 1 cm. Multi-photon ionization of 02 (£ = 8 for A = 0.775 /tm) and 
PNL = 1.7 GW are assumed. 
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51 

300 

Figure 7: Normalized spot size vs. propagation distance at three different 
times within the pulse (r = 0, 12, 120 fsec), for the same parameters as in 
Fig. 6. The portion of the pulse around r = 12 fsec maintains a relatively 
constant spot size for over 200 Rayleigh lengths. 
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Figure 8: Level plot of intensity vs. pulse time T — t- z/vg and normalized 
propagation distance z/ZR for the laser pulse of Figs. 6 and 7. A very short 
pulse of length fa 5 fsec with power P fa PNL is generated at z fa 80 ZR and 
propagates for fa 150 ZR before diffracting. 
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Figure 9: Variation of (a) laser spot size, (b) pulse duration, and (c) peak 
intensity, from z = 0 to z — 0.49 km, for a laser pulse with initial values 
R0 = 1 cm, T0 = 0.66 psec, ß0 = —20, and a0 = 0. The initial peak intensity 
is I„ = 109W/cm2 (P0/PNL = 0.94). Solid curves denote solutions of the 
envelope equations, i.e., Eqs. (46). Points in panels (a) and (b) and the 
dashed curve in panel (c) denote full scale simulation results. 
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Figure 10: Surface plots of the laser intensity at z = 0 and z — 0.49 km 
showing compression and focusing corresponding to the simulation of Fig. 9. 
Peak laser intensity increases by a factor of 300. 
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Figure 11: Full scale simulation results showing the variation of peak laser 
intensity and peak plasma density with propagation distance in the vicinity of 
the focal region. The laser pulse at Az = 0, is characterized by R = 0.25 mm, 
T = 120fsec, ß = 7.2, a = 2, and peak intensity / = 8.8 x 1012 W/cm2. 
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Figure 12: Surface plots of laser intensity following the formation of plasma 
for the parameters described in the caption of Fig. 11. 
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Figure 13: Variation of laser energy with propagation distance in the region 
of plasma formation for the simulation of Fig. 11. 
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Figure 14:  Normalized, on-axis profile of laser intensity (I/I0) and power 
(P/PNL) at propagation distance Az = 16.5 cm for the simulation of Fig. 11. 
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Figure 15: Fourier spectrum of laser intensity as a function of wavelength 
at propagation distances Az = 0, 15.2 cm, and 17.7 cm for the simulation of 
Fig. 11. 
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Figure 16: Intensity profile (dashed curves) and normalized instantaneous 
frequency spread (5u)/u)0) of the laser pulse at (a) Az = 0, and (b) Az = 
15.2 cm corresponding to the spectra of Fig. 15. 
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Figure 17: (a) Dependence of air density (dashed curve) and peak laser 
intensity (solid curve) on z (altitude), (b) Normalized laser spot size (dashed 
curve) and pulse duration (solid curve) as a function of altitude. Evolution 
of the laser spot size, pulse duration, and peak intensity for the given density 
profile are calculated using Eqs. (46). Initial conditions are given by R0 = 
28 cm, T0 = 5psec, 70 = 3.2 x 106 W/cm2, A = 1.06/mi, ß0 = -46 (a negative 
chirp with \5cüfuu\/u0 ^ 0.02), and a0 = 10. 
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